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Abstract: In the deconfined phase of quark-gluon plasma, it seems that most of the

quarks, antiquarks and gluons should be effectively free in the absence of the linear confining

potential. However, the remaining Coulomb-type potential between quarks in the plasma

could still be sufficiently strong that certain bound states, notably of heavy quarks such

as J/ψ are stable even in the deconfined plasma up to a certain temperature. Baryons

can also exist in the deconfined phase provided that the density is sufficiently large. We

study three kinds of exotic multi-quark bound states in the deconfined phase of quark-gluon

plasma from gravity dual models in addition to the normal baryon. They are k-baryon,

(N + k̄)-baryon and a bound state of j mesons which we call “j-mesonance”. Binding

energies and screening lengths of these exotic states are studied and are found to have

similar properties to those of mesons and baryons at the leading order. Phase diagram

for the exotic nuclear phases is subsequently studied in the Sakai-Sugimoto model. Even

though the exotics are less stable than normal baryons, in the region of high chemical

potential and low temperature, they are more stable thermodynamically than the vacuum

and chiral-symmetric quark-gluon plasma phases (χS-QGP).
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1 Introduction

The discovery of AdS/CFT correspondence [1, 2] provides a new tool for studying the

strongly coupled gauge theories. Although the original setup and most of the systems that

string theorists have been investigating so far are highly supersymmetric and conformal, a

lot of progress has been made in constructing more realistic models. Now we have examples

of QCD-like gauge theory with known gravity dual that share most of the qualitative

features of QCD. These holographic models allow us to perform analytic calculations in the

regimes which are too difficult to implement for the real QCD even for lattice calculations.

The properties of quark-gluon plasma from Relativistic Heavy Ion Collisions and QCD at

finite baryon density are two examples of such regimes.

The gravity dual of baryons can be described via baryon vertex [3, 4], a D-brane

wrapping higher dimensional sphere in 10-dimensional curved background with N strings

attached to it and ending at the boundary. These strings are required to cancel an N

charge in the world-volume of the wrapped brane due to the presence of RR flux in the

background. The endpoint of fundamental string that ends on D-brane is electrically

charged with respect to world-volume U(1) gauge field. Its charge is +1 or −1 depend-

ing on the orientation of the string and D-brane. Moreover, strings stretching from the

baryon vertex to the boundary of AdS or the corresponding background spacetime (e.g. in

Sakai-Sugimoto model) behave as fermions, giving antisymmetricity of the baryon vertex.

This fact allows us to construct an SU(N) gauge-invariant combination of N quarks as
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required by the group theory. Baryon configurations were investigated further in [5]–[7].

The authors in [8] extended the consideration in confining background where it was found

that the binding energy is linear in N and in the size of the baryon on the boundary.

And furthermore, they found that in NSUSY = 4 theory there are stable configurations for

baryons which are made of k quarks, or “k-baryon”, if 5N/8 < k ≤ N . Such configurations

can be realized by considering the usual baryon vertex with k strings stretched up to the

boundary and the rest N − k strings stretched down to the horizon. These baryons are

not colour singlet and transform as N !
k!(N−k)! representation under SU(N) gauge group, for

example the case k = N − 1 gives rise to a baryonic configuration in the anti-fundamental

representation. In a confining theory we do not expect to find such a bound state. It was

proposed in [9, 10] that the k < N bound states can exist in a deconfined phase.

In general, we could imagine that there would be more exotic baryon states in the

deconfined phase where bound states of quarks need not be the colour singlet. Some

attempts have been made in constructing holographic description of exotic multi-quarks

bound states [9]–[12]. The author in [12] considered exotic quark configurations formed

by combining two or more baryon vertices together. However, it might be possible to

construct an exotic baryon from a single baryon vertex which should be more energetically

preferable. One useful observation is that there are infinite combinations of string charges

that can cancel the charge from the background RR flux. Hence, the total number of strings

attached to the baryon vertex need not to be equal to N . For example, if the orientation

of D-branes is fixed in such a way that there is +N units of charge on its world-volume, we

can attach N + k strings, each with −1 charge and k strings with +1 charge to make the

total charge vanishes. As long as the conservation of charge is concerned, k could be any

integer. In this case, we can construct a k > N baryon. Such baryon could be the lightest

bound state in some irreducible representation of the underlying gauge theory, thus it may

be stable and can be observed in the deconfined phase. We would like to investigate this

possibility further in this paper.

It is also interesting to study exotic baryons in more realistic model such as Sakai-

Sugimoto model [13, 14]. This model is based on Witten’s model [15] which uses the

D4-brane wrapping a Scherk-Schwarz circle and adds a stack of Nf probe D8-branes and

a stack of Nf probe anti-D8-branes transverse to the circle. This model contains mass-

less chiral fermions and the flavour symmetry. The most striking feature of this model

is that it introduces geometrical mechanism for spontaneous chiral symmetry breaking.

Using the fact that the circle vanishes at a finite radial coordinates in the near horizon

limit, D8-branes and anti-D8-branes are connected in a U-shaped configuration. At low

temperature the model describes a confining gauge theory with broken chiral symmetry.

Above a deconfinement temperature, gluons become effectively free. However, both the

connected U-shape D8-branes configuration and the separated parallel brane-anti-brane

configuration are possible in the intermediate temperature. The chiral symmetry is still

broken even though the gluons are already deconfined. At higher temperature the chiral

symmetry is restored, which is illustrated geometrically by the separation of the D8-branes

and anti-D8-branes [16]. This corresponds to the branes being in parallel configuration.

– 2 –



J
H
E
P
0
5
(
2
0
0
9
)
0
0
6

The model also has an interesting phase structure. Finite baryon density in the Sakai-

Sugimoto model has been studied in [17, 18] and extended to the full parameter space in [19]

where baryon matter is represented by D4-branes in the D8-brane (nuclear matters) or by

strings stretched from the D8-brane down to the horizon (quark matters). It was shown that

the former configuration is always preferred to the latter and quark matters are unstable

to density fluctuations. In the deconfined phase there are three regions corresponding to

the vacuum, quark-gluon plasma, and nuclear matter, with a first-order and a second-order

phase transition separating these three phases. The author in [19] found that for a large

baryon number density, and at low temperatures, the dominant phase has broken chiral

symmetry in agreement with QCD at high density. It is interesting to see how exotic

baryon states fit into the phase structure.

This paper is organized as the following. In section 2, we discuss some classes of exotic

baryon configurations and investigate their static configurations in section 3. Binding en-

ergy and screening length of the configurations are calculated in section 4. The dependence

on free quark mass of exotic baryon configuration is discussed in section 5. The phase dia-

gram of Sakai-Sukimoto model with exotic baryons is investigated in section 6. We discuss

our results in section 7 and conclude in section 8.

2 Some classes of multi-quark states

In the deconfined phase of QGP, coloured states of a number of quarks and antiquarks can

exist in the medium as long as it is energetically more favoured than the free quarks and

antiquarks or other mesonic states. We will call these multi-quark states as “baryons” in

this article. In the confined phase, the only allowed baryons are those with colour singlet

combinations such as nucleons and pentaquarks. For the deconfined phase, baryons can

have colour and thus can have more varieties than the situation in the confined phase.

In general, a D(8− p)-brane wrapping the subspace S8−p of the background spacetime

sources the gauge field A(1) on its world volume. This gauge field will couple with the

antisymmetric (8− p)-form field strength G(8−p) and induce the charge upon the wrapping

D(8−p)-brane. If the background is generated by a stack of N Dp-branes, then the charge

being induced upon the wrapping D(8 − p)-brane will be exactly N . This charge needs to

be cancelled by external charges brought about by strings. Each of the strings stretching

out from the wrapping brane to the spacetime boundary or probe branes carries −1 unit

of charge. Therefore it is required that the total number of “quark” strings stretching out

from the wrapping brane must be N . The configuration of wrapping D(8 − p)-brane with

totally N strings stretching out is called a baryon vertex [3, 4].

For the confined phase, since quarks cannot exist as free-quark strings with one end

falling behind the horizon, therefore they can only start from the baryon vertex and go to

the probe branes. On the other hand, in the deconfined phase, a radial string configuration

lying along the radial coordinate is also a classical solution of the Nambu-Goto action [20]

and it represents the free (anti)quark state in the QGP medium. A string can either start

from the baryon vertex and go radially to the horizon of the background spacetime or it can

– 3 –
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Figure 1. The gravity dual configurations of the hypothetical exotic states (a) k-baryon with

the number of hanging strings kh = k < N and the number of radial strings kr = N − k. (b)

(N + k̄)-baryon with kh = N + k̄ and kr = k̄. (c) j-mesonance with kh = 2j and kr = N .

come from the horizon and end at the baryon vertex. We will call this string configuration

which is allowed in the deconfined phase as the “radial string”.

In the deconfined phase of QGP, it is possible to have kh strings hanging from the

spacetime boundary down to the baryon vertex and another kr strings stretching radi-

ally from the baryon vertex down to the horizon. The total number kh + kr = N is

the charge conservation constraint on the configuration. This configuration is known as

“k-baryon” [8].

Another possible configuration is when there are N quark-strings and k̄ antiquark-

strings hanging down to the vertex from the probe branes. To conserve the charge, there

are additional k quark-strings hanging from the vertex down to the horizon. We will

call this configuration “(N + k̄)-baryon” (e.g. pentaquark could be represented by one of

this kind).

An even more interesting configuration allowed in the deconfined phase is when there

are j pairs of quark and antiquark strings hanging from the probe branes down to the

vertex. Again, to conserve charges, we need N radial strings stretching from the vertex

down to the horizon. This configuration obviously can decay into j mesons when it is less

energetically favoured. Therefore we will call this state, a “j-mesonance”, representing a

binding state of j mesons in the QGP.

In summary, the charge conservation constraint for each case can be expressed as

the following.

For k-baryon,

kh + kr = N ; kh = k. (2.1)

For (N + k̄)-baryon,

kh − kr = N ; kh = N + k̄. (2.2)
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For j-mesonance,

kh = 2j; kr = N. (2.3)

Note that kh is the number of strings hanging from the boundary down to the baryon

vertex and kr is the number of strings hanging from the vertex down to the horizon. The

value of k̄ and j can be as large as N × Nf . However, in this article, we will take this

number to be large and ignore the upper bound on k̄ and j. Each configuration of exotic

baryons is illustrated in figure 1.

3 Force conditions

In this section, we will consider the force condition for each exotic configuration of the

quarks and antiquarks in a deconfined phase. The calculation will be performed in the

gravity background similar to those of Sakai and Sugimoto’s [13]. Even though the chiral

symmetry restoration can be addressed within this model, we will not consider the aspect in

this section but rather focus our attention on the high temperature phase where quarks and

antiquarks are effectively free in the absence of the linear confining potential. The positions

of D8/D8 will be taken to be large and we will approximate it to be infinity in this section

as well as in the discussion of binding energy and screening length in section 4. Analysis in

this heavy-quark limit provides us with valuable physical understanding of certain essential

features of the exotic states. Generalized results for a near-horizon background metric of

the Dp-branes solution and its dependence on positions of the probe branes will be given

in section 5.

Even in the deconfined phase, quarks and antiquarks feel effective (screened) potential

from other constituents. Therefore, a number of population of them will exist in various

forms of bound states, some of which are exotic in the sense that they cannot be formed

in the confined phase at low temperature.

Start with the following background metric

ds2 =

(

u

RD4

)3/2
(

f(u)dt2 + δijdx
idxj + dx4

2
)

+

(

RD4

u

)3/2(

u2dΩ2
4 +

du2

f(u)

)

(3.1)

F(4) =
2πN

V4
ǫ4, eφ = gs

(

u

RD4

)3/4

, R3
D4 ≡ πgsNl

3
s ,

where f(u) ≡ 1 − u3
T /u

3, uT = 16π2R3
D4T

2/9. Note that the compactified x4 coordinate

(x4 transverse to the probe D8 branes), with arbitrary periodicity 2πR, never shrinks to

zero. The volume of the unit four-sphere Ω4 is denoted by V4 and the corresponding volume

4-form by ǫ4. F(4) is the 4-form field strength, ls is the string length and gs is the string

coupling. The dilaton in this background has u-dependence and its value changes along

the radial direction u. This is a crucial difference in comparison to the AdS-Schwarzschild

metric case where dilaton contribution is constant.

The action of the baryon configuration is given by

S = SD4 + khSF1 + krS̃F1, (3.2)
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where SD4 represents the action of the D4-brane. SF1 is the action of a stretched string

from the boundary down to the baryon vertex and S̃F1 is the action of a radial string

hanging from the baryon vertex down to the horizon. Recall that SD4 can be obtained

from the Dirac-Born-Infeld action.1 After some calculations, we obtain

SD4 =
τNuc

√

f(uc)

6πα′
, SF1 =

τ

2πα′

∫ L

0
dσ

√

u′2 + f(u)
( u

R

)3
, S̃F1 =

τ

2πα′
(uc − uT),

(3.3)

where τ is the total time over which we evaluate the action and uc is the position where

the D4-brane vertex is located.

The variation of the action with respect to u gives the volume term and the sur-

face term. The volume term leads to the usual Euler-Lagrange equation for the classi-

cal configuration of strings. As an approximation, we assume the baryon vertex to be a

point (not being distorted by the connecting strings) located at a fixed value of u = uc as

in ref. [8]. Under this assumption, the surface terms provide additional zero-force condition

on the configuration,
N

3
G0(x) − khB + kr = 0 (3.4)

where

G0(x) ≡
1 + x3

2√
1 − x3

, x ≡ uT

uc
< 1, and B ≡ u′c

√

u′c
2 + f(uc)(

uc
RD4

)3
. (3.5)

Notice that these conditions occur at the location of the vertex at u = uc, at which there

exists the balance between the pull-up force (toward the direction of increasing u) due to

the tension of hanging strings and the pull-down force due to the “weight”2 of D4-brane

plus the tension of radial strings.

Since B ≤ 1, we obtain

kh ≥ N

3
G0(x) + kr, (3.6)

which expresses the lower bound of the number of hanging strings. In other words, the

number of hanging strings cannot be less than this critical value, otherwise the no-force

condition is not satisfied. The equality of (3.6) is held only when all hanging strings are

stretched straight, otherwise we require more hanging strings to balance the pull-down

force. Let us now consider each class of the multi-quark states.

In the case of k-baryon, plugging the condition (2.1) into (3.6), we obtain

kh = k ≥ N

6
(G0(x) + 3) . (3.7)

1

SDBI =

Z

dx
0
dξ

p
Tp; Tp =

“

e
−φ(2π)p

α
′(p+1)/2

”

−1 p

−det(g)

2This is not exactly the weight in the usual sense since the direct gravitational force on Dbrane is already

balanced by the force from the RR-flux, but it is the force originated from minimization of self-energy due

to the brane tension caused by the background metric and the gauge interaction. This is very similar to

the self-energy of a spring under gravity where the spring potential energy changes with the tidal force

from gravity in the background. The DBI action of the D4∼ uc

p

f(uc) which is positive for uc > uT and

becomes zero (minimum) at uc = uT and thus it represents the “weight” on D4 towards the horizon.

– 6 –
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Apart from the lower bound, we also have the upper bound, k ≤ N , therefore G0(x) cannot

be larger than 3, resulting in

x . 0.922. (3.8)

Notice that this restriction on x is a result from the conditions of the force balance and

conservation of string charges. This shows that there is an upper-bound on the temperature,

over which the horizon is too near to the point vertex that the pull-down force always

overcomes the pull-up one.

In the case of (N + k̄)-baryon, in the same way as the preceding case, plugging the

condition of charge conservation (2.2) into (3.6), we have the following condition,

kh = N + k̄ ≥ N

3
G0(x) + k̄.

Unlike the case of k-baryon, the upper-bound of the number of hanging strings does not

exist. However, we still obtain the same condition G0(x) ≤ 3, hence x . 0.922.

Finally, in the case of j-mesonance, similarly, eq. (2.3) results in

j ≥ N

6
(G0(x) + 3) . (3.9)

The lower-bound of the value of j is 2N/3 at zero temperature (x = 0) and it will be larger

as the temperature grows. Nevertheless, the upper-bound of the limit on j does not exist.

Finally, we would like to comment on the limits on the value of k, k̄, j when the temper-

ature is zero. In terms of n ≡ 7−p (of the spacetime background generated by Dp-branes),

the condition (3.6) becomes

kh ≥ N

n
+ kr (3.10)

which leads to
k

N
,
j

N
≥ n+ 1

2n
, (3.11)

and no conditions on k̄. This critical numbers are 5/8, 2/3 for n = 4, 3 (the AdS-

Schwarzschild and Sakai-Sugimoto model) respectively. It is an interesting coincidence

that the critical numbers are the same for both k-baryon and j-mesonance. Even though it

appears from eq. (3.10) that there should also be a constraint on the (N+ k̄) configuration,

it turns out that there is none.

4 Binding energy and the screening length

In this section we will calculate the binding energies of the k-baryon, (N + k̄)-baryon,

and j-mesonance in the deconfined phase. These binding energies are taken to be the

differences between the total energies of each configuration and the corresponding energies

of the free strings configuration which represents the free quarks and/or antiquarks state.

The number of free strings in the free quarks state is determined solely by the total number

of strings hanging from the boundary, kh.

– 7 –
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The total energy of each configuration is given by E = S/τ of the corresponding action

S for each configuration. The binding energy for each hanging string is consequently,

EF1 =
1

2π

∫ L

0
dσ

√

u′2 +

(

u

RD4

)3

f(u) − 1

2π

∫ ∞

uT

du. (4.1)

Due to the no-force condition in the surface term, we impose eq. (3.4) and eq. (3.5), or

u′c
2

=
f(uc)B

2

1 −B2

(

uc

RD4

)3

(4.2)

where the tension of each hanging string at uc is constrained by

B = B(kh, kr, x) =
N

3kh
G0(x) +

kr

kh
. (4.3)

Since the Lagrangian L does not depend on σ explicitly, the conserved Hamiltonian

can be defined to be

H ≡ L− u′
∂L
∂u′

= const, (4.4)

leading to
f(uc)(

uc
RD4

)3
√

u′c
2 + f(uc)(

uc
RD4

)3
=

f(u)( u
RD4

)3
√

u′2 + f(u)( u
RD4

)3
. (4.5)

Then substituting eq. (4.2) into this equation, we obtain

u′
2

=
f(u)2( u

RD4
)6

f(uc)(
uc

RD4
)3(1 −B2)

− f(u)

(

u

RD4

)3

. (4.6)

This gives the size (radius) of the baryon as seen on the gauge theory side,

L =
R

3/2
D4

u
1/2
c

∫ ∞

1
dy

√

(1 − x3)(1 −B2)

(y3 − x3)(y3 − x3 − (1 − x3)(1 −B2))
. (4.7)

Note that uc ≈ R3
D4

L2 at the leading order.

Using eq. (4.6) and let y ≡ u/uc, the regulated binding energy now becomes

EF1 =
uc

2π

{

∫ ∞

1
dy

[

√

y3 − x3

(y3 − x3) − (1 − x3)(1 −B2)
− 1

]

− (1 − x)

}

. (4.8)

Hence, we obtain the total energy of the configurations as

E =
NuT

2π

(√
1 − x3

3x
+

(

kh

N

) E
x

+

(

kr

N

)

1 − x

x

)

(4.9)

∼
N2

L2
(4.10)

where E represents the terms within the brace of (4.8).
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Figure 2. Comparison of the potential per N between N -baryon, k-baryon, and (N + k̄)-baryon

for k/N = 0.8, k̄1/N = 2/3, k̄2/N = 2 at temperature T = 0.25.

To obtain the relations between the total energy of the configurations E(x) and L(x),

we eliminate the parameter x = uT /uc. By numerical calculations, the results are shown in

figure 2, 3. The binding energy of N -baryon is the deepest, suggesting that it is the most

tightly bound state. For (N+k̄)-baryon, increasing k̄ makes the binding energy smaller and

the bound state is less tightly bound. The case of j-mesonance is quite similar. Generically,

a j-mesonance has shallower binding potential than the total energy of j mesons. However,

as j grows, the difference gets smaller and smaller.

The screening radius or screening length of exotic multi-quark state is defined to be

the value of radius L∗ at which the binding energy becomes zero from negative values

at smaller distances. This screening radius is therefore one-half of the usual definition of

screening length in the discussion of mesonic state where it is defined as the zero-potential

distance between quark and antiquark.

Numerical results suggest that the screening length of baryons and mesonance decrease

as the temperature increases, i.e. L∗ ∼ 1/T for a fixed value of k, k̄, j as is shown in

figure 4-6. This is the generic form for the screening length in both the AdS-Schwarzschild

and Sakai-Sugimoto models because it is the quantity which does not depend on the ’t

Hooft coupling at the leading order [21]. It is also an increasing function of k and j.

Interestingly, (N+ k̄)-baryon has the opposite tendency with the screening length decreases

as k̄ grows. On the other hand, the screening length of j-mesonance has a saturation value

L∗
j−mesonance → L∗

meson as j → ∞.

– 9 –
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Figure 3. Comparison of the potential per N between j-mesonance and j mesons for j1/N =

0.8, j2/N = 3 at temperature T = 0.25.
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Figure 4. Screening length with respect to k for the temperatures in 0.15 − 0.35 range.
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Figure 5. Screening length with respect to k̄ for the temperatures in 0.15 − 0.35 range.
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Figure 6. Screening length with respect to j for the temperatures in 0.15 − 0.35 range.

5 Dependence on the free quark mass

In this section, we will study dependence of the binding potential on the position of the

probe branes. This is useful when position of the probe branes are at finite distance from
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the black hole horizon and the corresponding quarks have finite mass. For example, the

probe branes are D8 and D8 flavour branes in the Sakai-Sugimoto model.

The calculation of binding energy as a function of the radius L of the multi-quark

states in the previous sections can be generalized to the case where the background metric

is generated by a stack of Dp-branes as the following. Start with the energy of a hanging

fundamental string with n = 7 − p,

EF1 =
uc

2π

{

∫ ∞

1
dy

[

√

yn − xn

(yn − xn) − (1 − xn)(1 −A(n)2)
− 1

]

− (1 − x)

}

(5.1)

and the radius,

L =
Rn/2

uc
(n−2)/2

∫ ∞

1
dy

√

(1 − xn)(1 −A(n)2)

(yn − xn)(yn − xn − (1 − xn)(1 −A(n)2))
. (5.2)

The total regulated binding energy of the configuration then becomes

Etot =
Nuh

2π

{√
1 − xn

nx
+

(

kh

N

) E
x

+

(

kr

N

)

1 − x

x

}

(5.3)

where

E =

∫ ∞

1
dy

[

√

yn − xn

(yn − xn) − (1 − xn)(1 −A(n)2)
− 1

]

− (1 − x), (5.4)

and

A(n) =
u′c

√

u′c
2 + f(uc)(

uc
RDp

)n
=

N

nkh

(

1 + n−2
2 xn

√
1 − xn

)

+
kr

kh
. (5.5)

The parameter x is again given by

x =
uT (n)

uc
, uT (n = 3, 4) =

16

9
π2R3T 2, πR2T. (5.6)

Note that the case n = 3 and n = 4 corresponds to the case of Sakai-Sugimoto and

AdS-Schwarzschild gravity dual model respectively.

Introduction of quark masses into the configuration can be done by terminating hanging

strings at certain radial distance umax < ∞. The universal behaviour of heavy-quark

potential comes from the limit umax → ∞. We can split the total binding potential of the

string into two parts. The first part is the binding potential in the umax → ∞ limit and

the second part is the mass dependent potential. Therefore, the mass dependence part of

the binding potential, EF1(umax) (m = umax/2π), can be expressed as

EF1(finite mass) = EF1(umax → ∞) + EF1(umax), (5.7)

EF1(umax) = − uc

2π

∫ ∞

umax/uc
dy

[

√

yn − xn

(yn − xn) − (1 − xn)(1 −A(n)2)
− 1

]

(5.8)

= −umax(1 −A(n)2)

4π(n− 1)

(

un
c − un

T

un
max

)

+O(u1−2n
max ). (5.9)

– 12 –



J
H
E
P
0
5
(
2
0
0
9
)
0
0
6

Eliminate uc by using

L =
Rn/2

uc
(n−2)/2

∫ umax/uc

1
dy

√

(1 − xn)(1 −A(n)2)

(yn − xn)(yn − xn − (1 − xn)(1 −A(n)2))
. (5.10)

The result involves complicated functions of A which can be cast in the following form,

EF1(umax) ∼ −u1−n
max

(

Rn2/(n−2)f1(A) + un
T f2(A)

)

, (5.11)

where f1,2(A) are some functions of A.

Interestingly, the mass dependence of multiquark potentials has similar form as the

mass dependence of mesonic state ∼ m1−n in ref. [20]. This is natural due to the fact that

most of the mass of constituent quarks come from the tail part of strings which extend

to the large-u region. The mass dependence of the binding potential at the leading order

is therefore determined only by the contribution of the hanging strings from the large-u

region. As long as the background spacetime of the gravity dual is asymptotically similar

to the background considered here in the large-u limit, we would expect the same mass

dependence as the form we obtained in this section.

6 Phase diagram

A natural question to ask is whether we have a phase where the exotic multiquark states

are preferred over the normal nuclear matter (namely the gas of N -baryons), vacuum, and

the chiral-symmetric quark-gluon plasma phase. To consider a realistic model where these

three phases are distinct, we focus our consideration on the Sakai-Sugimoto model with

n = 3. To calculate the phase diagram involving exotic states, it is necessary to consider

the contribution from D8 and D8-branes in the Sakai-Sugimoto model in addition to the

contributions from strings and D4-branes. We will assume that the characteristic distance

between D8 and D8 in x4 direction is L0. The relevant scales of the model therefore depend

on both uT and L0.

When there is no radial string pulling the vertex down towards the horizon, it was

demonstrated in ref. [7] by numerical method that the vertex will be pulled all the way up

to the position of the flavour branes if the temperature is not very high. Addition of radial

strings to the vertex would pull the vertex and the flavour branes towards the horizon. As

temperature rises, the radial strings pull the vertex down with stronger force since they are

closer to the horizon. It is possible that the vertex then starts to separate from the flavour

branes and we might need to consider the configuration where vertex and flavour branes

are separated. However, we can see that the difference between the two configurations

should be relatively small (namely, only the force conditions will be slightly different) and

we should be able to approximate the situation by considering the configuration where the

vertex is not separated from the flavour branes. It is also shown in the appendix that this

configuration satisfies the force condition and thus is allowed. Therefore, it will be assumed

that the vertex is always in the flavour branes for the discussion in this section. Moreover,

the vertex will be treated as a static configuration and any distortion caused by the strings

attached to it will be ignored.

– 13 –



J
H
E
P
0
5
(
2
0
0
9
)
0
0
6

The calculations presented in this section are adapted from ref. [19] except that we

add radial strings hanging from the vertex down to the horizon for the consideration of

exotic nuclear phase. We also use position of the D4, uc, instead of u0 (where x′4(u0) →
∞) in our calculation concerning the exotics. This approach allows us to deal with the

contribution from radial strings more conveniently. As is shown in figure 7, the vacuum

phase with broken chiral symmetry corresponds to the configuration where D8 and D8 are

connected into a curve in the x4−u projection. The chiral-symmetric phase of quark-gluon

plasma (χS-QGP) corresponds to the configuration with the parallel D8 and D8 stretching

from the spacetime boundary down to the horizon. Finally, the nuclear (including exotics)

phase corresponds to the configuration where the D4 vertex is located at the D8-D8 curve,

pulling it down towards the horizon by its “weight” in the background. Each vertex has

radial strings attached to it, pulling it further towards the horizon. When there is no radial

strings attached, the nuclear phase is of normal N -baryons. The chiral symmetry is also

broken in this phase.

Under the above assumptions, the contribution from the strings hanging down from

the spacetime boundary to the vertex is negligible. The only contribution of strings is from

the radial strings hanging down from the vertex to the horizon. The total action of the

configuration is given by

S = SD8 + SD4 + S̃F1. (6.1)

Generically, the DBI action of the D8-branes is given by

SD8 = −µ8

∫

d9Xe−φTr
√

−det(gMN + 2πα′FMN ) (6.2)

where the field strength of the flavour group U(Nf ) is

F = dA + iA ∧A. (6.3)

The flavour branes provide “global” quantum numbers such as baryon number to the

string and subsequently to the strings-brane configuration dual to baryon in the gauge

theory side. The diagonal part of the representation matrix of U(Nf ) is the U(1) subgroup

which induces baryon number to the end of string attached to the flavour branes. Redefine

the U(1) part so that

A = ASU(Nf ) +
1

√

2Nf

Â (6.4)

with Â represents the U(1) piece of the gauge field. The DBI action of the D8-brane

coupled to the diagonal gauge field is then given by

SD8 = N
∫

du u4
√

f(u)(x′4(u))
2 + u−3(1 − (â′0(u))

2) (6.5)

where the constant scales linearly with Nf as

N =
µ8τNfΩ4V3R

5

gs
, (6.6)
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and the rescaled U(1) diagonal field,

â =
2πα′Â
R
√

2Nf

. (6.7)

The action does not depend on â0(u) explicitly and therefore a constant of motion can be

defined as

d =
uâ′0(u)

√

f(u)(x′4(u))
2 + u−3(1 − (â′0(u))

2)
. (6.8)

We will see below that the constant d can be interpreted as the baryon number density

sourced by the D4-branes once we introduce the Chern-Simon action of the gauge field.

Note that d plays the role of the electric displacement field [19]. In the confined phase,

the only possible source for d is the D4-brane wrapped on S4 in the D8-branes. In the

deconfined phase, either D4-brane or strings which stretch from the D8-brane down to the

horizon can serve as the sources for d. Here, in the study of exotic baryons, we consider

the case where both D4-brane and strings are present as the sources. This possibility was

not investigated in [19].

Similarly, the constant of motion with respect to x4(u) leads to

(x′4(u))
2 =

1

u3f(u)

[

f(u)(u8 + u3d2)

f(u0)(u
8
0 + u3

0d
2)

− 1

]−1

(6.9)

where u0 is the position when x′4(u0) = ∞.

Instead of using u0 as the reference position, the radial position of the D4 on the

D8-branes, uc, can be used to calculate x′4(u),

(x′4(u))
2 =

1

u3f(u)

[

f(u)(u8 + u3d2)

F 2
− 1

]−1

(6.10)

where

F =
f(uc)

√

u8
c + u3

cd
2

√

f(uc)(x′4(uc))2 + u−3
c

x′4(uc) (6.11)

=

√

u3
cf(uc)

3

[

1 +
1

2

(

uT

uc

)3

+ 3ns

√

f(uc)

]

√

9(u5
c + d2)

1 + 1
2 (uT

uc
)3 + 3ns

√

f(uc)
− d2

f(uc)
.

The number of radial strings ns represents the number of strings hanging down from D4-

branes to the horizon in unit of 1/N . For k, (N + k̄)-baryon and j-mesonance, the values

of ns are 1 − k/N, k̄/N, 1 respectively. Calculation of x′4(uc) is performed by minimizing

the action with respect to the variation of uc (see appendix). For a fixed L0, increasing

the number of strings ns results in D4-D8 configuration being pulled down more towards

the horizon.

The U(Nf ) gauge field A also generates Chern-Simon term,

SCS =
N

24π2

∫

M4×R
ω5(A). (6.12)
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For A = Aµdx
µ + Audu, the 5-form field strength is given by

ω5(A) = Tr

(

AF2 − 1

2
A3F +

1

10
A5

)

. (6.13)

Only the first term contains non-vanishing contribution from the U(1) part which would

be identified with the number density of baryon. We will assume a uniform distribution n4

of the gas of D4-branes in R
3 at u = uc in the radial direction. This leads to the relation

between the number density of D4-branes, n4, and baryon number density d [19],

n4 =
2πα′R2N
τV3N

d. (6.14)

Phase transition for a system where the number of particles varies is most conveniently

described by the grand canonical ensemble. The grand canonical potential of each phase

can be defined using the corresponding action of the D8-branes as

Ω(µ) =
1

N SD8[x4(u), â0(u)]cl. (6.15)

The baryon chemical potential is given by the U(1) diagonal field at the boundary,

µ = â0(∞), (6.16)

from which the baryon number density is determined,

d = −∂Ω(µ)

∂µ
. (6.17)

This justifies the association of grand canonical potential with the D8 action. When addi-

tional sources of the baryon number are introduced, the free energy, FE, from the sources

will also contribute to the baryon chemical potential,

µ =
∂

∂d

1

N
(

S̃D8[x4(u), d(u)]cl + Ssource(d, uc)
)

≡ ∂FE

∂d
, (6.18)

where the Legendre-transformed action S̃D8 is given by

S̃D8 = SD8 + N
∫ ∞

uc

d(u)â′0 du, (6.19)

= N
∫ ∞

uc

du u4
√

f(u)(x′4(u))
2 + u−3

√

1 +
d2

u5
. (6.20)

In our case, the additional sources are D4 and radial strings. These relations can also be

applied to the vacuum phase (with broken chiral symmetry) where uc is replaced with u0.

Setting L0 = 2
∫∞

ui=u0,uc
x′4(u)du = 1, the expressions for the grand canonical potential

and the chemical potential for each phase are given by

vacuum phase, d = 0:

Ωvac =

∫ ∞

u0

du
u5/2

√

f(u)
√

f(u) − u8
0

u8 f(u0)

, (6.21)

– 16 –



J
H
E
P
0
5
(
2
0
0
9
)
0
0
6

L0L0
L0

 uc

 u0

 u0

uT uT uT

(a) (b) (c)

Figure 7. Configurations of χS-QGP (a), vacuum (b) and exotic nuclear phase (c) in x4 − u

projection.

χS-QGP phase, x′4(u) = 0:

Ωqgp =

∫ ∞

uT

du
u5

√
u5 + d2

, (6.22)

µqgp =

∫ ∞

uT

du
d√

u5 + d2
, (6.23)

nuclear (including exotics) phase:

Ωnuc =

∫ ∞

uc

du

[

1 − F 2

f(u)(u8 + u3d2)

]−1/2 u5

√
u5 + d2

, (6.24)

µnuc =

∫ ∞

uc

du

[

1 − F 2

f(u)(u8 + u3d2)

]−1/2 d√
u5 + d2

+
1

3
uc

√

f(uc) + ns(uc − uT ).

(6.25)

At a fixed temperature T and chemical potential µ, a first order phase transition line

between phase 1 and 2 is obtained when Ω1 = Ω2, µ1 = µ2 = µ. Transitions between

vacuum ↔ χS-QGP and χS-QGP ↔ nuclear phases are of this kind. On the other hand,

phase transition between nuclear ↔ vacuum is second order in nature, at least for this

case when there is no interaction between each D4. The second order phase transition line

occurs when

∂µ

∂d
=
∂2FE

∂d2
(6.26)

has discontinuity at d = 0.

In the Sakai-Sugimoto model, there is a phase transition temperature above which

gluons become deconfined. However, it does not necessarily imply that everything including

quark and antiquark is totally free and chiral symmetry is completely restored above this

temperature. When the baryon chemical potential is sufficiently high, baryons can exist

even when the temperature is higher than the deconfinement temperature [19]. Only when

the temperature increases even further that everything will be completely dissolved and the
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Figure 8. The phase diagram of exotic nuclear matters above the deconfinement temperature.

Nuclear phase including exotics is shown as the region on the lower right corner where it is divided

into 3 parts for representative purpose. A,B,C represents the region where exotic baryon phase

with ns = 0 (N -baryon), 0.1, 0.3 is preferred over vacuum and χS-QGP respectively.

chiral symmetry is also restored. We also see this behavior in the phase diagram in figure 8

where we ignore the confined region at low temperature and present only the deconfined

part of the phase diagram.

The phase diagram of vacuum with broken chiral symmetry, χS-QGP and phase of

nuclear including exotic multi-quark states is shown in figure 8. The phase diagram involv-

ing vacuum and χS-QGP phases was first obtained in ref. [18] and the full phase diagram

without the exotics was obtained in ref. [19]. Since the strings pull down the D4-D8

configuration towards the horizon, the configuration with ns > 0 is less stable than the

normal N -baryon (ns = 0). This is shown in figure 8 where the region of ns > 0 nuclear

phase (B,C) is smaller than the region of N -baryon phase (A). They are actually less

stable than the N -baryon since the grand canonical potential Ωns>0(T, µ) > Ωns=0(T, µ)

for 0.5 > ns > 0. Above ns > 0.3, the exotic phase becomes unstable to density fluctu-

ations (∂µ
∂d < 0) at high temperatures in certain range of d but still remains stable in a

region of parameter space. Numerical studies reveal that for approximately ns > 0.5, the

multiquark states become unstable thermodynamically with respect to density fluctuations

for most of the temperatures.

Addition of radial strings introduces extra source of the baryonic chemical potential.

We can see from figure 8 that the value of µonset for the exotic nuclear phase increases with

the value of ns. Nevertheless, once emerged (i.e. µ > µonset), the exotic phases are more

stable than the vacuum at any temperature, but less stable than χS-QGP at sufficiently

high temperatures above which chiral symmetry is restored.
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7 Discussions

It is desirable to compare the binding energy of each multi-quark state in order to discuss

the stability of each configuration as well as their relative abundances in the deconfined

phase. At a fixed temperature T , we can compare numerically the binding energies E as

functions of the size L of the configuration as is shown in figure 2, 3. For k-baryon and

(N + k̄)-baryon, we compare the energy with N -baryon. For j-mesonance, we compare the

energy with the energy of j mesons.

From figure 2, N -baryon is more energetically favoured than k-baryon and (N + k̄)-

baryon for any value of k, k̄. Since there are less hanging strings from the spacetime

boundary and more radial strings pulled down into the horizon in the case of k-baryon,

the vertex is located closer to the horizon and consequently becomes less energetically

favoured comparing to the N -baryon. Similarly in the case of (N + k̄), even though not as

obvious, adding k̄ hanging and radial strings to the configuration of N -baryon results in

positive energy increase in the binding potential, making this configuration less favoured

energetically. An (N + k̄)-baryon naturally tends to decay into N -baryon plus k̄ free

antiquark strings. A k-baryon also has the tendency to fuse with (N − k) quarks to form

an N -baryon with lower energy.

The situation of j-mesonance is somewhat similar. Even though j mesons are always

energetically preferred over j-mesonance for all value of j, j-mesonance with higher value

of j has stronger binding force than the lower ones as is shown in figure 3. From the energy

viewpoint, j-mesonance will prefer to split into a number of j mesons. It is notable that

the screening length of j-mesonance will approach the value of meson, L∗
meson, but it will

never exceed L∗
meson.

For the case of (N + k̄)-baryon and j-mesonance, there exist the limits k̄ → ∞ and

j → ∞. The first limit for (N + k̄)-baryon leads to the zero-size configuration which

saturates the zero-force condition. The second limit for j-mesonance leads to the mesonic

limit where the configuration is similar to the system of j mesons as we will see in the

following.

From eq. (5.5), since A(n) ∼ (j/N )−1, A(n) becomes negligible for large j/N . There-

fore, we can neglect A(n) and obtain that EF1 does not depend on j/N . Using asymptotic

expansions, eq. (5.4) becomes

E ≃
{

∫ ∞

1
dy

[
√

yn − xn

yn − 1
− 1

]

− (1 − x)

}

=

{

uT − Γ
(

1
2

)

Γ
(

1 − 1
n

)

Γ
(

1
2 − 1

n

)

C2/(n−2)

L2/(n−2)

}

+ O(xn), (7.1)

where

C(n) ≡ Rn/2

n

Γ(1 − 1
n)Γ(1

2 )

Γ(3
2 − 1

n)
.

Now, consider eq. (5.3), we find the screening length L∗ (half the distance between

quarks at which the binding energy is zero) by setting Etot = 0. In the limit of j/N
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becoming very large, we can obtain L∗ from the condition

E(L∗) = 0, (7.2)

leading to

L∗ ≃
[

Γ(1
2 )Γ(1 − 1

n)

uT (n)Γ(1
2 − 1

n)

](n−2)/2

C(n). (7.3)

Again, the case n = 3 and n = 4 correspond to the Sakai-Sugimoto and the AdS-

Schwarzschild gravity dual model respectively. This expression is exactly the same as

the screening length of meson in the deconfined phase from ref. [20].3 It is no surprise since

in the j → ∞ limit, the hanging strings from the boundary exert force overwhelmingly,

therefore the “weight” of the baryon vertex plus the tension of radial strings become negli-

gible. Effectively, the end of hanging string at the vertex will feel zero force down and thus

the slope u′c will be zero. As a result, the strings from the boundary will hang smoothly

and appear similar to hanging strings in the case of the mesonic state.

Even in the deconfined phase, we therefore perceive that in addition to free quarks,

antiquarks, and gluons, there will also be mesons and multi-quark states. Due to the

lower energy, there are more N -baryons than (N + k̄)-baryons and k-baryons. The relative

populations can be estimated using the Boltzmann factor

exp

(

− E

kBT

)

, (7.4)

determined by the corresponding binding energy E for each state.

A more precise way of considering the deconfined phase is to use the grand canonical

potential as the indicator for the stable phase. Following Bergman, Lifschytz, and Lip-

pert [19], we consider three phases of the deconfined soup, a vacuum phase and a nuclear

phase with broken chiral symmetry, and a χS-QGP. For sufficiently high chemical potential

and moderate temperature, the nuclear phase of the multiquark states is preferred over the

vacuum and χS-QGP phase. Exotic nuclear states such as k-baryon, (N + k̄)-baryon, and

j-mesonance are characterized by the number of radial strings ns hanging down from the

D4-branes to the horizon. It is found that the multiquark states with ns > 0.5 are unstable

thermodynamically. However, all of these exotic states with 0.5 ≥ ns > 0 are less stable

than the normal N -baryon with ns = 0.

For each value of ns, there exists a triple point where the grand canonical poten-

tials of the three phases are equivalent. Varying ns, this triple point will move along the

phase transition line between vacuum and the χS-QGP as is shown in figure 8. The sta-

ble region of the nuclear phase shrinks as ns increases. As ns > 0.5, the nuclear phase

becomes thermodynamically unstable with respect to the density fluctuations for most of

the parameter space.

8 Conclusion

The gravity dual picture of the deconfined phase suggests that the binding energy or

potential between quarks and antiquarks in this phase is nonzero due to the Coulombic

3Our definition of the screening length is one-half of the definition in ref. [20].
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piece of the interaction. Since the colorless condition is not required in the deconfined

phase, exotic configurations of the multiquark states are possible. We investigate three

classes of these configurations, k-baryon, (N + k̄)-baryon, and j-mesonance. It is found

that all of these configurations are less energetically favoured than the normal N -baryon

as well as being less stable thermodynamically.

The dependence of the screening length on the parameters k, k̄, j is studied and the

results are shown in figure 4-6. The screening length of k-baryon and j-mesonance are

notably increasing with the values of k and j whereas the screening length of (N + k̄)-

baryon is a decreasing function of k̄. Interestingly, j-mesonance has saturated value of

screening length equal to the screening length of meson as j → ∞.

The dependence on the quark mass of the binding potential at the leading order is

derived and found to be ∼ m1−n (n = 3, 4 for the Sakai-Sugimoto, AdS-Schwarzschild

model). The linear quark-mass dependence of the rest energy that we naturally expect is

included in the regulator and therefore not present in the binding potential.

In order to consider phase diagram involving exotic nuclear phase, we consider the

Sakai-Sugimoto model where the flavour branes D8 and D8 are introduced. The flavour

D8-branes action is identified with the grand canonical potential of the relevant phase. The

nuclear phase is considered in the limit when the D4-branes are pulled all the way up to the

flavour branes. Exotic multiquark states with a number of strings stretched down to the

horizon, i.e. ns > 0, become less stable than normal N -baryon (ns = 0) since radial strings

attached to the D4-branes pull the D4-D8 configuration closer to the horizon. Nevertheless,

comparing to the vacuum and χS-QGP phase, the nuclear phase of exotic multiquark states

can be more stable in a region of phase diagram with high chemical potential and low

temperature as is shown in figure 8. In this region, we expect to have a nuclear phase

where N -baryons, k-baryons, and (N + k̄)-baryons coexist. For j-mesonance with ns = 1,

our consideration of the grand canonical potential suggests that it is thermodynamically

unstable to density fluctuations since ∂µ
∂d < 0. Generically, numerical studies reveal that

exotic baryons with ns > 0.5 (namely k-baryon with k/N < 0.5, (N + k̄)-baryon with

k̄/N > 0.5 and any j-mesonance) in the deconfined phase are thermodynamically unstable

to density fluctuations.
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A Force condition at the D8-branes

There are three forces acting on a D4 locating inside the D8-branes, one from the D8,

another from the radial strings pulling down towards horizon and lastly the force from its

own “weight” in the background. The equilibrium can be sustained only when these three

forces are balanced. As is shown in ref. [19], variation of the total action with respect to

uc and the constant of motion with respect to x4(u) lead to

x′4(uc) =

(

L̃(uc) −
∂Ssource

∂uc

)

/

∂S̃D8

∂x′4

∣

∣

∣

∣

uc

, (A.1)

=
1

d

√

√

√

√

9u2
c(1 + d2

u5
c
)

1 + 1
2 (uT

uc
)3 + 3ns

√

f(uc)
− d2u−3

c

f(uc)
(A.2)

where the Legendre transformed action is

S̃D8 =

∫ ∞

uc

L̃(x′4(u), d) du, (A.3)

= N
∫ ∞

uc

du u4
√

f(u)(x′4(u))
2 + u−3

√

1 +
d2

u5
, (A.4)

and the source term is given by

Ssource = Nd

[

1

3
uc

√

f(uc) + ns(uc − uT )

]

. (A.5)

There are two contributions from the D-branes and strings as the sources for the baryon

chemical potential. Additional strings increase the baryonic chemical potential of the exotic

multiquark states. Since the number of total charge on each D4 is N which is absorbed

into N , the number of radial strings stretched down to the horizon, ns, is thus given in

unit of 1/N .
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